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INTRODUCTION

     The present work is intended as a supplement to the well known planetary, lunar and solar tables
produced by Bryant Tuckerman (1962, 1964). Since these tables appeared- as volumes 56 and 59 of the
Memoirs of the Society-they have continued to prove an invaluable aid to historians of astronomy. An
important usage is the dating of ancient and medieval astronomical observations but the tables also have
wide application in determining the accuracy of early measurements and calculations.
     Our supplementary volume owes its origin to the discovery by the authors?F. Richard Stephenson and
Michael A. Houlden (1981)? of significant errors in Tuckerman's tabular positions of Mars. Following a
query put to one of us (FRS) by the late Professor A.J. Sachs of Brown University, Providence, R.I.
regarding the real accuracy of the tables, we made a systematic comparison between Tuckerman's positions
for the Sun and planets and those computed from an integrated ephemeris. Only in the case of the longitude
of Mars were errors found to be serious but these could amount to as much as 0.7 deg (considerably more
than the Moon's apparent diameter). Before outlining the content of the present work, some remarks are
necessary on various aspects of Tuckerman's original memoirs.

EXTENT AND PRECISION OF
TUCKERMAN'S TABLES

      In two remarkably compact volumes, positions of the five bright planets, together with the Moon and
Sun, are tabulated over the entire period between 601 BC (or -600) and AD 1649 at intervals of 5 or 10
days. Coordinates are geocentric, relative to the ecliptic-i.e., longitude and latitude. These are more suitable
than equatorial co-ordinates (right ascension and declination) for most planetary and lunar calculations and
interpolation is much easier. In the case of the Moon and the more rapidly moving planets Mercury and
Venus, positions are tabulated every five days, while for the Sun, Mars, Jupiter and Saturn the
corresponding interval is 10 days. The hour selected is 16 h UT (4 p.m. Greenwich Civil Time or roughly 7
p.m. at both Babylon and Baghdad).
     Tuckerman computed planetary and solar positions to the nearest 0.01 deg, which - provided this
accuracy is realised - is more than sufficient for any practical purpose; not until the late seventeenth century
was higher precision achieved in measurement. As he stated, it should be possible to interpolate
satisfactorily all coordinates except the longitude of Mercury when this planet happened to be near inferior
conjunction with the Sun. In the case of the Moon, which typically moves through more than 60 degrees
every 5 days, there would have been little justification for tabulating positions to the same accuracy since
interpolation would not be possible. Instead, Tuckerman rounded both the lunar longitude and latitude to
the nearest 0.1 deg. At this level of precision, interpolation again becomes reasonably practicable. However,
contrary to Tuckerman's suggestion, the lunar data are not really adequate for analysing such precise
observations as eclipses and occultations. In our opinion, the lunar tables are mainly useful as a guide to the
approximate location of the Moon; in any case many lunar calculations require a fairly substantial
correction for parallax. Only the planetary and solar data are of value for detailed investigations, but here
the applications are extensive. A knowledge of the real accuracy of the tabular co-ordinates is thus of prime
importance.
     In computing the data for the tables, Tuckerman rather surprisingly adopted what was in general
outmoded orbital theory. He used the theory of Leverrier (1858-1861) for the Sun and inner planets, that of
Gaillot (1904, 1913) for the outer planets and that of Hansen (1857) for the Moon; in each case he adopted
modifications to certain of the orbital elements as derived by Schoch (1926). None of the theories cited had
formed the basis of the American Ephemeris since well before 1930. However, despite these cautionary
remarks, it is not our purpose to criticise Tuckerman's choice of orbital theory. Our main concern is the
accuracy of the data in the published tables themselves.
     The question of the true precision of the data tabulated by Tuckerman was first considered in detail by
the present authors (Stephenson and Houlden, 1981). For this purpose, the then recently developed Long
Export Ephemeris (code name DE 102) was used (Newhall et al., 1983). This ephemeris is based on a
systematic numerical integration of the equations of motion of the planets. [ii] The advantage of this type of
ephemeris is that a "theory," such as was used to construct Tuckerman's tables, is not needed. Given precise
masses and accurate starting positions and velocities for each planet, then in principle an ephemeris can be
calculated at any time in the past or future. A typical step proceeds as follows. Starting with some moment
at which the rectangular heliocenttic co-ordinates and velocities of the planets are all accurately known, the



total force on each planet due to the gravitational action of the Sun and the remaining planets is calculated.
The position and velocity of each planet at some neighbouring moment (typically 12 hours away) is then
obtained by integrating the equations of motion. The process is then repeated as often as required. DE 102
covers the entire period between 1411 BC (-1410) and AD 3002.
     The time system adopted for DE 102 is ET (Ephemeris Time), whereas that used by Tuckerman was UT
(Universal Time). In order to effect direct comparison between Tuckerman's tabular co-ordinates and the
corresponding DE 102 values, we derived the following expression for AT (ET - UT) by comparing
Tuckerman's adopted expression for the solar mean longitude with that deduced by Newcomb (1895) which
defines ET:

∆T = +4.87 +35.06 T + 36.79 T2 seconds   (1)

     Here T is in Julian centuries of 36525 days, measured from the epoch 1900.0.
     As might be expected, there is excellent accord between the planetary latitudes tabulated by Tuckerman
and those calculated from DE 102. The latitudes of the planets are always fairly small; only Venus moves
very far from the ecliptic (to a maximum of about 8 deg). However, the tabular longitudes require detailed
discussion. For Mercury, Venus and the Sun, we found the agreement between the tabular and calculated
longitudes to be very satisfactory. As far back as 601 BC (the epoch at which the tables commence)
discrepancies of more than 0.02 deg are very rare and further are essentially random. In a sample of 200
positions for each object, the maximum error was found to be only 0.05 deg (for Venus). On the contrary,
the deviations for Mars were disturbingly large, reaching 0.7 deg around 600 BC see Fig 1. Huber (1983)
pointed out that the cause of these discrepancies for Mars was Tuckerman's inadvertent choice of incorrect
orbital elements for this planet; these corresponded to ET rather than UT. In particular, Huber demonstrated
that the replacement of the quadratic term in Tuckerman's adopted expression for the mean longitude of
Mars by its equivalent value in UT gave good accord with DE 102 (deviations as small as 0.05 deg).

Fig 1. Deviations between Tuckerman's tabular longitudes of Mars and those computed from DE 102 at (i) perihelic
oppositions (maximum discrepancy) and (ii) superior conjunctions (minimum discrepancy)

     For the outer planets Jupiter and Saturn, the longitudes tabulated by Tuckerman are in very good
agreement with the DE 102 data. In the case of Jupiter, over the entire period since about AD 200 the
maximum discrepancy is as small as 0.03 deg. Although before that date deviations as large as 0.1 deg may
occur, a smooth correction curve can be produced - see Fig 2. Use of this curve enables the tabular
longitudes of Jupiter to be reduced to the equivalent DE 102 values with an accuracy of about 0.02 deg as
far back as the beginning of the tables. It is evident from Fig 2 that the discrepancies are approximately
periodic with increasing amplitude going backwards in time. For Saturn, we have deduced a similar curve
(Fig. 3) which allows the tabular longitudes to be corrected with errors as small as 0.03 deg at any time



since about 300 BC.

Fig 2. Mean corrections to Tuckerman's tabular longitudes of Jupiter in order to obtain best agreement with longitudes
computed from DE 102

Fig 3. Mean corrections to Tuckerman's tabular longitudes of Saturn in order to obtain best agreement with longitudes
computed from DE 102

In earlier centuries the scatter of individual values becomes rather larger-approaching 0. 1 deg - so that at
this period only comparatively rough, but still useful estimates of the longitude of Saturn can be made from
the tables.

OUTLINE OF THE PRESENT TABLES

     In producing the present tables we have two main objectives-to make available revised positions for
Mars throughout the period 601 BC to AD 1649 and to enable the apparent magnitude of each planet to be



estimated at any time during this period.
     Using the integrated ephemeris DE 102, we have computed the longitude and latitude of Mars to the
nearest 0.01 deg at 10 day intervals for the same time of day as selected by Tuckerman (16 h UT). As a
check on accuracy, we have compared a series of our calculated longitudes for the planet with those based
on an orbital theory for Mars which until very recently was used in generating positions for the
Astronomical Almanac. This is the theory of Newcomb (1898), with corrections derived by Ross (1917).
Co-ordinates of Mars deduced from the Newcomb-Ross theory were kindly supplied by B. Emerson of the
Royal Greenwich Observatory. The agreement between these and the equivalent DE 102 data is close to
0.01 deg as far back as 601 BC, sound evidence in favour of the reliability of our tabular data.
     Brief remarks are needed on the question of the clock error AT. This arises from a gradual increase in
the length of the day due to a combination of lunar and solar tides and other causes. From an extensive
study of historical observations, mainly of eclipses and occultations, Stephenson and Morrison (1984)
deduced revised expressions for zXT. The difference between values calculated from these formulas and
figures based on equation (1) above is less than one hour at all periods back to 601 BC, which is negligible
for the present purpose. For consistency, in producing the present tables we have used equation (1) to
calculate/xT values.
     We have taken the opportunity to increase the versatility of the present volume by including- at 10-day
intervals - the apparent magnitudes of each of the five bright planets Mercury, Venus, Mars, Jupiter and
Saturn. We ourselves have often felt the need for readily accessible data of this kind. The values tabulated
here should be especially useful in the case of Mercury and Mars, both of which fluctuate in brightness to a
considerable degree. In not much more than a month, the magnitude of Mercury can vary from about - 1.5
at superior conjunction to fainter than + 3 at inferior conjunction. Changes in the brightness of Mars are
much slower, but between opposition and conjunction the magnitude varies from about -2 to + 2. Both
planets revolve in rather elliptical orbits. As a result, the actual range in magnitude for Mercury at superior
conjunction is from -0.8 to -1.6 whereas for Mars at opposition the range is between -1.2 and -2.6. At a
close opposition, Mars can thus briefly outshine Jupiter. The brightness of Venus, Jupiter and Saturn is
relatively steady, seldom varying over a range of much more than about one magnitude. The main factor in
the case of Saturn is the visibility of the ring system; due to the changes in the aspect of the rings, the
opposition magnitude of this planet varies between about +0.7 and -0.3. In the tables we have computed the
apparent magnitudes of the planets from the formulae derived by Mtiller (1893). These formulae, which are
based on numerous observations, formed the basis of the data in the Astronomical Almanac until 1983. The
differences between these and the newer formulae employed- due to Harris (1961)- are trivial for all
practical purposes.

USE OF TABLES

     The accompanying pages of tables normally carry four years of data, the only exception being for the
first ' page, covering -600 and -599 (i.e. 601 and 600 BC). This format has been chosen for convenience so
that a typical single page of the present volume will correspond to an open double page of Tuckerman. Our
tables actually extend to A. D. 1651, rather than 1649. Column by column for each year we have: (i) the
ecliptical longitude of Mars; (ii) the latitude of the planet; (iii) the apparent magnitude of Mars; (iv) the
longitude of the Sun- given for reference; (v) the Julian Calendar date; (vi) to (ix) the apparent magnitudes
of Mercury, Venus, Jupiter and Saturn. Interpolation of the magnitude data should be accurate except in the
rare instances for Mercury and Venus when these planets pass very close to the Sun at inferior
conjunction-a transit across the solar disc being an extreme example. The planetary symbols appearing at
the top of the page are:

 

o Mars U Venus

Q Sun V Jupiter

S Mercury W Saturn
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Sample: Mars, solar longitudes and magnitudes; January 9, -567 to 28 July, -567.

LONG
 U

LAT MAG
Q

LONG

16.00
UT

-567
S
M

T
M

V
M

W
M

10.71 0.76 0.8 284.18 9JA -0.2 -3.4 -1.5 1.3

 16.08  0.88 1.0 294.26 19JA  -0.4 -3.4  -1.5 1.3

 21.61  0.97 1.2  304.30 29JA  -0.9 -3.3  -1.6 1.3

 27.27  1.05 1.3  314.28 8FE  -1.4 -3.3  -1.7 1.3

 33.02  1.12 1.4  324.20 18FE  -1.1 -3.3  -1.7 1.3

 38.85  1.17 1.5  334.06 28FE  -0.1 -3.3  -1.8 1.3

 44.75  1.21 1.6  343.86 10MR  1.5 -3.3  -1.9 1.3

 50.69 1.24 1.7  353.61 20MR  3.4 -3.4  -2.0 1.2

 56.68 1.26 1.8  3.30 30MR  2.4 -3.4  -2.0 1.2

                 

 62.70 1.28 1.8  12.94 9AP  1.4 -3.4  -2.1  1.2

 68.75 1.29 1.9  22.54 19AP  0.8 -3.4  -2.1  1.2

 74.84 1.29 1.9  32.11 29AP  0.1 -3.5  -2.2  1.2

 80.96 1.29 2.0  41.65 9MY  -0.8 -3.5  -2.2  1.1

 87.10 1.28 2.0  51.17 19MY  -1.7 -3.6  -2.2  1.1

 93.28 1.27 2.0  60.69 29MY  -1.2 -3.6  -2.1  1.1

 99.50 1.26 2.0  70.21 8JN  -0.4 -3.7  -2.1  1.0

 105.75 1.24 2.0  79.74 18JN  0.2 -3.8  -2.0  1.0

 112.03 1.21 2.0  89.29 28JN  0.6 -3.9  -2.0  0.9

                 

 118.36 1.18 2.0  98.86 8JL  1.0 -4.0  -1.9  0.9

124.74 1.15 2.0 108.48 18JL 1.8 -4.1 -1.9 0.8

131.17 1.11 2.0 118.14 28JL 3.2 -4.2 -1.8 0.8

                   (Houlden and Stephenson 1986)




